Topic:Fake Image Detection
What is Fake Image Detection? Fake image detection is the process of identifying and detecting fake or manipulated images using deep learning techniques.
Papers and Code
Mar 19, 2025
Abstract:The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
Via

Mar 19, 2025
Abstract:With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.
Via

Mar 20, 2025
Abstract:Detecting DeepFakes has become a crucial research area as the widespread use of AI image generators enables the effortless creation of face-manipulated and fully synthetic content, yet existing methods are often limited to binary classification (real vs. fake) and lack interpretability. To address these challenges, we propose TruthLens, a novel and highly generalizable framework for DeepFake detection that not only determines whether an image is real or fake but also provides detailed textual reasoning for its predictions. Unlike traditional methods, TruthLens effectively handles both face-manipulated DeepFakes and fully AI-generated content while addressing fine-grained queries such as "Does the eyes/nose/mouth look real or fake?" The architecture of TruthLens combines the global contextual understanding of multimodal large language models like PaliGemma2 with the localized feature extraction capabilities of vision-only models like DINOv2. This hybrid design leverages the complementary strengths of both models, enabling robust detection of subtle manipulations while maintaining interpretability. Extensive experiments on diverse datasets demonstrate that TruthLens outperforms state-of-the-art methods in detection accuracy (by 2-14%) and explainability, in both in-domain and cross-data settings, generalizing effectively across traditional and emerging manipulation techniques.
Via

Mar 14, 2025
Abstract:Fake News and especially deepfakes (generated, non-real image or video content) have become a serious topic over the last years. With the emergence of machine learning algorithms it is now easier than ever before to generate such fake content, even for private persons. This issue of generated fake images is especially critical in the context of politics and public figures. We want to address this conflict by building a model based on a Convolutions Neural Network in order to detect such generated and fake images showing human portraits. As a basis, we use a pre-trained ResNet-50 model due to its effectiveness in terms of classifying images. We then adopted the base model to our task of classifying a single image as authentic/real or fake by adding an fully connected output layer containing a single neuron indicating the authenticity of an image. We applied fine tuning and transfer learning to develop the model and improve its parameters. For the training process we collected the image data set "Diverse Face Fake Dataset" containing a wide range of different image manipulation methods and also diversity in terms of faces visible on the images. With our final model we reached the following outstanding performance metrics: precision = 0.98, recall 0.96, F1-Score = 0.97 and an area-under-curve = 0.99.
Via

Mar 16, 2025
Abstract:Deepfake is a widely used technology employed in recent years to create pernicious content such as fake news, movies, and rumors by altering and substituting facial information from various sources. Given the ongoing evolution of deepfakes investigation of continuous identification and prevention is crucial. Due to recent technological advancements in AI (Artificial Intelligence) distinguishing deepfakes and artificially altered images has become challenging. This approach introduces the robust detection of subtle ear movements and shape changes to generate ear descriptors. Further, we also propose a novel optimized hybrid deepfake detection model that considers the ear biometric descriptors via enhanced RCNN (Region-Based Convolutional Neural Network). Initially, the input video is converted into frames and preprocessed through resizing, normalization, grayscale conversion, and filtering processes followed by face detection using the Viola-Jones technique. Next, a hybrid model comprising DBN (Deep Belief Network) and Bi-GRU (Bidirectional Gated Recurrent Unit) is utilized for deepfake detection based on ear descriptors. The output from the detection phase is determined through improved score-level fusion. To enhance the performance, the weights of both detection models are optimally tuned using the SU-JFO (Self-Upgraded Jellyfish Optimization method). Experimentation is conducted based on four scenarios: compression, noise, rotation, pose, and illumination on three different datasets. The performance results affirm that our proposed method outperforms traditional models such as CNN (Convolution Neural Network), SqueezeNet, LeNet, LinkNet, LSTM (Long Short-Term Memory), DFP (Deepfake Predictor) [1], and ResNext+CNN+LSTM [2] in terms of various performance metrics viz. accuracy, specificity, and precision.
* Submiited to journal
Via

Mar 14, 2025
Abstract:As AI-generated sensitive images become more prevalent, identifying their source is crucial for distinguishing them from real images. Conventional image watermarking methods are vulnerable to common transformations like filters, lossy compression, and screenshots, often applied during social media sharing. Watermarks can also be faked or removed if models are open-sourced or leaked since images can be rewatermarked. We have developed a three-part framework for secure, transformation-resilient AI content provenance detection, to address these limitations. We develop an adversarially robust state-of-the-art perceptual hashing model, DinoHash, derived from DINOV2, which is robust to common transformations like filters, compression, and crops. Additionally, we integrate a Multi-Party Fully Homomorphic Encryption~(MP-FHE) scheme into our proposed framework to ensure the protection of both user queries and registry privacy. Furthermore, we improve previous work on AI-generated media detection. This approach is useful in cases where the content is absent from our registry. DinoHash significantly improves average bit accuracy by 12% over state-of-the-art watermarking and perceptual hashing methods while maintaining superior true positive rate (TPR) and false positive rate (FPR) tradeoffs across various transformations. Our AI-generated media detection results show a 25% improvement in classification accuracy on commonly used real-world AI image generators over existing algorithms. By combining perceptual hashing, MP-FHE, and an AI content detection model, our proposed framework provides better robustness and privacy compared to previous work.
Via

Mar 08, 2025
Abstract:Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we reveal that natural and synthetic images exhibit distinct differences in the high-frequency domains of their Fourier power spectra after undergoing iterative noise perturbations through an inverse multi-step denoising process, suggesting that such noise can provide additional discriminative information for identifying synthetic images. Based on this observation, we propose a novel detection method that amplifies these differences by progressively adding noise to the original images across multiple timesteps, and train an ensemble of classifiers on these noised images. To enhance human comprehension, we introduce an explanation generation and refinement module to identify flaws located in AI-generated images. Additionally, we construct two new datasets, GenHard and GenExplain, derived from the GenImage benchmark, providing detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and harder samples, increasing a minimal of 2.51% and 3.46% compared to baselines. Furthermore, our method also generalizes effectively to images generated by other diffusion models. Our code and datasets will be made publicly available.
* 13 pages, 5 figures
Via

Mar 08, 2025
Abstract:Faces synthesized by diffusion models (DMs) with high-quality and controllable attributes pose a significant challenge for Deepfake detection. Most state-of-the-art detectors only yield a binary decision, incapable of forgery localization, attribution of forgery methods, and providing analysis on the cause of forgeries. In this work, we integrate Multimodal Large Language Models (MLLMs) within DM-based face forensics, and propose a fine-grained analysis triad framework called VLForgery, that can 1) predict falsified facial images; 2) locate the falsified face regions subjected to partial synthesis; and 3) attribute the synthesis with specific generators. To achieve the above goals, we introduce VLF (Visual Language Forensics), a novel and diverse synthesis face dataset designed to facilitate rich interactions between Visual and Language modalities in MLLMs. Additionally, we propose an extrinsic knowledge-guided description method, termed EkCot, which leverages knowledge from the image generation pipeline to enable MLLMs to quickly capture image content. Furthermore, we introduce a low-level vision comparison pipeline designed to identify differential features between real and fake that MLLMs can inherently understand. These features are then incorporated into EkCot, enhancing its ability to analyze forgeries in a structured manner, following the sequence of detection, localization, and attribution. Extensive experiments demonstrate that VLForgery outperforms other state-of-the-art forensic approaches in detection accuracy, with additional potential for falsified region localization and attribution analysis.
Via

Feb 24, 2025
Abstract:Identifying AI-generated content is critical for the safe and ethical use of generative AI. Recent research has focused on developing detectors that generalize to unknown generators, with popular methods relying either on high-level features or low-level fingerprints. However, these methods have clear limitations: biased towards unseen content, or vulnerable to common image degradations, such as JPEG compression. To address these issues, we propose a novel approach, SFLD, which incorporates PatchShuffle to integrate high-level semantic and low-level textural information. SFLD applies PatchShuffle at multiple levels, improving robustness and generalization across various generative models. Additionally, current benchmarks face challenges such as low image quality, insufficient content preservation, and limited class diversity. In response, we introduce TwinSynths, a new benchmark generation methodology that constructs visually near-identical pairs of real and synthetic images to ensure high quality and content preservation. Our extensive experiments and analysis show that SFLD outperforms existing methods on detecting a wide variety of fake images sourced from GANs, diffusion models, and TwinSynths, demonstrating the state-of-the-art performance and generalization capabilities to novel generative models.
* IEEE/CVF WACV 2025, Oral
Via

Feb 11, 2025
Abstract:Detecting AI generated images is a challenging yet essential task. A primary difficulty arises from the detectors tendency to rely on spurious patterns, such as compression artifacts, which can influence its decisions. These issues often stem from specific patterns that the detector associates with the real data distribution, making it difficult to isolate the actual generative traces. We argue that an image should be classified as fake if and only if it contains artifacts introduced by the generative model. Based on this premise, we propose Stay Positive, an algorithm designed to constrain the detectors focus to generative artifacts while disregarding those associated with real data. Experimental results demonstrate that detectors trained with Stay Positive exhibit reduced susceptibility to spurious correlations, leading to improved generalization and robustness to post processing. Additionally, unlike detectors that associate artifacts with real images, those that focus purely on fake artifacts are better at detecting inpainted real images.
Via
